Obstructions to the Existence of Sasaki–Einstein Metrics
نویسندگان
چکیده
We describe two simple obstructions to the existence of Ricci–flat Kähler cone metrics on isolated Gorenstein singularities or, equivalently, to the existence of Sasaki–Einstein metrics on the links of these singularities. In particular, this also leads to new obstructions for Kähler–Einstein metrics on Fano orbifolds. We present several families of hypersurface singularities that are obstructed, including 3–fold and 4–fold singularities of ADE type that have been studied previously in the physics literature. We show that the AdS/CFT dual of one obstruction is that the R–charge of a gauge invariant chiral primary operator violates the unitarity bound.
منابع مشابه
New Results in Sasaki-Einstein Geometry
This article is a summary of some of the author’s work on Sasaki-Einstein geometry. A rather general conjecture in string theory known as the AdS/CFT correspondence relates Sasaki-Einstein geometry, in low dimensions, to superconformal field theory; properties of the latter are therefore reflected in the former, and vice versa. Despite this physical motivation, many recent results are of indepe...
متن کاملTransverse Kähler Geometry of Sasaki Manifolds and Toric Sasaki-einstein Manifolds
In this paper we study compact Sasaki manifolds in view of transverse Kähler geometry and extend some results in Kähler geometry to Sasaki manifolds. In particular we define integral invariants which obstruct the existence of transverse Kähler metric with harmonic Chern forms. The integral invariant f1 for the first Chern class case becomes an obstruction to the existence of transverse Kähler m...
متن کاملOn Sasaki-einstein Manifolds in Dimension Five
We prove the existence of Sasaki-Einstein metrics on certain simply connected 5-manifolds where until now existence was unknown. All of these manifolds have non-trivial torsion classes. On several of these we show that there are a countable infinity of deformation classes of Sasaki-Einstein structures.
متن کاملEinstein Metrics and Git Stability
In this expository article we review the problem of finding Einstein metrics on compact Kähler manifolds and Sasaki manifolds. In the former half of this article we see that, in the Kähler case, the problem fits better with the notion of stability in Geometric Invariant Theory if we extend the problem to that of finding extremal Kähler metrics or constant scalar curvature Kähler (cscK) metrics....
متن کاملWEYL CURVATURE , EINSTEIN METRICS , AND SEIBERG - WITTEN THEORY Claude LeBrun
We show that solutions of the Seiberg-Witten equations lead to nontrivial estimates for the L2-norm of the Weyl curvature of a compact Riemannian 4-manifold. These estimates are then used to derive new obstructions to the existence of Einstein metrics on smooth compact 4-manifolds with a non-zero Seiberg-Witten invariant. These results considerably refine those previously obtained [21] by using...
متن کامل